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1 Advection and Diffusion

The advection equation is given by

— =l + f(u). (2)
x
c and p are determined experimentally.

The advection equation is used when the particle motion is due to the
motion of the ambient fluid.

The diffusion model is used when the particles move randomly.

Sometimes advection and diffusion are both at work:
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For either the advection or diffusion equation, there may be many solu-
tions. The solution for a particular problem depends heavily on initial
and boundary conditions.



2 Equilibrium Solutions

An equilibrium solution to (1) or (2), is a solution u = u(z,t) that is inde-
pendent of time. Thus, u = u.(x) must either obey
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plus the relevant boundary conditions.

3  Stability

Let u. be an equilibrium solution to
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The solution u.(z) is a linearly stable solution to
d?u,
Tz T fue) =0
d d
ﬁue((]) = ﬁue(l}) = 0

if and only if there is no pair (g,\) , where g(x) is some function that is
not identically zero for 0 < x < L, where A € R, and where the following
constraints are satisfied.
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A solution is unstable if there is even one such pair (g, \) that obeys the
above conditions.



4 An Example for Advection

The equation
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has a time independent solution
1
ex/100 +1
that models bacteria concentrations in a river that is downstream from a
sewage treatment plant, where x is the distance downstream from the plant.

ue(z) =

5 An Example for Diffusion

The equation

ou  du 5

E = @ +u—u
might model the fish concentration in a square lake that is stocked at both
ends. Consider a rectangular lake of constant width and depth. Suppose that
fish are dumped into the lake at either end such that the concentration of
the fish at the ends of the lake are three fish per 100 m3. If —7/2 <z < 7/2

and

U(t, _7T/2) = U(t, 71-/2) = 3? (3)
then we have an equilibrium solution
3
uefw) = cosx + 1

In order to verify stability, we must check solutions to the equation
d*’q cosx—5
Ng= —2 4+ —— 4
9= 4 " Tt cosz” (4)
with

g(=m/2) = g(m/2) = 0.
If g satisfies these conditions, then

u(t,z) = eMg(x) + ()

will satisfy (3). Given the complexity of u., solving (4) may be difficult or
even impossible.



6 The Maximum Principle

We can use the Mazimum Principle to analyze (4). Here is the idea. Assume
that you have found a pair (), g) satisfying (4) such that g is not identically
zero. We will argue that A < 0. If this is the case, then we have a stable
solution.

e First, g must have a maximum and a minimum on [—x/2,7/2]. Fur-
thermore, the maximum and the minimum cannot be the same. If they
were, then g would have to be a constant function. Since we know g
at the endpoints, g must be identically zero. In this case, which we
assumed could not be the case.

e Suppose that ¢ > 0 at its maximum.! Then g must be concave down
at this point and d?g/dz* < 0 here. Since g > 0 and —1 < cosz < 1,

we know that
cosST — D <0
1+ cosz g '

Thus, A\g < 0, which tells us that A < 0.

e On the other hand, suppose that ¢ < 0 and has no positive maxi-
mum. Then g must have a negative minimum, and d?g/dz? > 0 at the
minimum. Since g < 0 and

cosx — H
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we know that the right side of (4) is positive. Therefore, A must be less
than zero in order for the left side to be positive.

Our argument depends heavily on the boundary conditions and f(u).
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"We divided this into cases: g > 0 and g < 0.
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