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Introduction  

Plant geometry is a key factor of the modelling of plant eco-physiological interaction with the 
environment. This interaction may concern either the abiotic (resource capture, heat dissipation) or the 
biotic (disease propagation, insect movement) environment. Depending on applications, plant 
geometry has been abstracted in various ways (Godin, 2000): simple volumic shapes (like ellipsoids, 
cones, or “big leaves” used in turbib medium approaches) or detailed models to render realistic trees. 
Global descriptions are simple and contain few parameters. However, they do not capture the irregular 
nature of plant shapes which severely limits the generalization capacity of the model. On the other 
hand, detailed descriptions tentatively address this problem but require over-parameterization of 
geometry, leading to non-parsimonious models. Characterizing the irregularity of plant shapes with a 
few parameters is thus a challenging problem in the eco-physiological modelling of plants.  

Fractal geometry was introduced as a new conceptual framework to analyze and model the nature 
of irregular shapes (Mandelbrot, 1983). This framework has been  applied in different occasions to the 
modelling of plant structure. Generative approaches used fractal concepts to illustrate how intricate 
vegetal-like structures could be generated using parsimonious models of plants shapes (Smith, 1984), 
(Barnsley, 1988), (Prusinkiewicz and Hanan, 1989). Such models were used to generate artificial 
plants in modelling applications, e.g. (Chen et al., 1994), (Prusinkiewicz et al., 2001). Fractal 
geometry was used also to analyse the irregularity of plants by determining their supposed fractal 
dimension. This parameter is of major importance in the study of irregularity since it characterizes the 
way plants physically penetrate into the 3D space. Most of these studies were carried out on woody 
structures, and especially on root systems (Fitter, 1987), (Eshel, 1998), (Oppelt et al., 2000). A few 
works have indirectly addressed the problem of determining the fractal dimension of plant canopies. 
Relying on the assumption that plants are self-similar organisms (Zeide and Pfeifer, 1991) (Zeide, 
1991) used a comparison between estimated leaf areas and crown surface to estimate the fractal 
dimension of forest trees. Fractal dimension was also estimated from 2D photographs of crowns 
(Critten, 1997), (Morse et al., 1985). However, such a technique always under-estimate the actual 
fractal dimension (Falconer, 1990), and is not accurate. These studies provided reasons to think that 
plant crowns have fractal properties, but this was not yet proved directly from the 3D analysis of the 
plant shape. This study aims at showing fractal properties of plants by using recent techniques 
developed for crown 3D digitizing at leaf resolution (Sinoquet et al., 1998). For this purpose, a range 
of fractal methods is applied to various 3D digitized tree databases and to theoretical plants generated 
from fractal rules.  

 
Material and method 

3D Plant database 
Eight 3D plants were included in the study. Four real trees were 3D-digitised in the field, while 4 

additional plants were generated from theoretical assumptions. 
Digitized plants 

One three-year old hybrid walnut tree (NG38 x RA) and two two-year old mango trees (cv. Nam 
Nok Mai) were 3D-digitised at leaf scale, according to (Sinoquet et al., 1998), in August 1998 and 
November 1997, respectively. The walnut tree was grown in an experimental plot in Clermont-
Ferrand INRA research centre, France, while the mango trees were grown in a commercial farm in 
Bangbun, 150 km South-East from Bangkok, Thailand. The location and orientation of each leaf was 
recorded with a magnetic digitiser (Fastrak 3Space, Polhemus, Vermont) while leaf length and width 
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were measured with a ruler. A sample of leaves was harvested on similar trees to establish an 
allometric relationship between individual leaf area and the product of leaf length and width. 
Individual area of sampled leaves was measured with a leaf area meter Li-cor 3100. The data sets 
therefore consisted of a collection of leaves, the size, the orientation and the location of which have 
been measured in the field. 

Four four-year peach trees (cv. August Red) were digitised in May 2001 in CTIFL Center, Nîmes, 
South of France, at current-year shoot scale, one month after bud break. Given the high number of 
leaves (≈14,000), digitising at leaf scale was impossible. The magnetic digitising device was therefore 
used to record the spatial co-ordinates of the bottom and top of each leafy shoot. Thirty shoots were 
digitised at leaf scale in order to derive i) leaf angle distribution, ii) allometric relationships between 
number of leaves, shoot leaf area and shoot length. Leaves of each shoot were then generated from i) 
allometric relationships, ii) sampling in leaf angle distribution and iii) additional assumptions for the 
internode length and the distribution of leaf size within a shoot. 

 
Figure 1. Four digitized plants. From left to right: mango tree 1, mango tree 2, peach tree, walnut tree 

 
Theoretical plants  

Three fractal plants were generated from 3D iterated function systems (Barnsley, 1988) as 
illustrated in Figure 2. The initial object was a tapered ellipsoid and the IFS transformation was made 
of n duplications of a contracted object by a factor c. If the duplications of the IFS do not overlap, the 
theoretical fractal dimension of the IFS attractor is: 

c
nDT Ln

Ln=  

 
Figure 2. Series of iterations that generate a self-similar plant from an IFS consisting of 9 duplications of an 

initial object contracted by a factor 3 (theoretical fractal dimension DT =2).  
Three self-similar artificial canopies were generated using different IFS (respectively shown in 

Figure 3) : AC1 (n=9,c=3) example of Figure 2, AC2 (n=9,c=3) identical to the previous one with 
larger gaps between duplications, AC3 (n=7,c=3) identical to AC1 with less duplications. Each IFS 
was developed over 5 iterations. In addition to these self-similar plants a reference random isolated 
canopy (RP) was generated by randomly locating 1,000 leaves within a 1-m3 cube. Virtual leaves 
were horizontal disks, the diameter of which was 10 cm. 
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Figure 3. Four theoretical plant crowns. From left to right: fractal plants AC1, AC2, AC3, RC, with theoretical 
fractal dimension DT respectively 2.0, 2.0, 1.771, and a uniform random distribution of leaves.  

 
Methods for computing fractal properties 
Different types of measures have been applied on the plant database to tentatively characterize the 

geometric irregularity of plants. 
Fractal dimension  

Fractal dimension expresses the (constant) rate at which new geometrical details appear as one 
zooms in an object. In this respect, the fractal dimension is a measure of the geometric irregularity of 
the object. Several estimators have been developed to compute this characteristic from raw data. 
These estimators were usually applied on 2D images, including in application to plants canopies, 
leading to inaccurate estimations. In this paper, we developed 3D methods to design these estimators 
directly from 3D architectural data. 

Box counting method.  This method has been extensively used to estimate fractal dimension of 
objects embedded in the plane. Its adaptation to 3-D analysis consists of building a 3-D grid dividing 
space in voxels of size δ (volume δ3) and counting the number N(δ) of grid voxels intercepted by the 
studied object at scale δ. The estimator of the fractal dimension bD of the object is defined as: 

δ

δ
δ 1Ln 

)(Ln lim
0

NDb →
=  

The geometric scenes representing the plant crowns were designed using the PlantGL library 
(Boudon et al., 2001). All the geometric objects were approximated by triangle meshes. To detect 
intersection of grid voxels with the scene objects, the algorithm described in (Françon et al., 1997) 
was used.  

The local dimension method (mass method) defines a local estimator of the fractal dimension (e.g. 
(Gouyet, 1992)). It relies on the observation that the “mass” M(x,δ) of the part of an object contained 
in a ball of varying radius δ, centered on a point x of the object, varies as: 

lDxAxM δδδ ).,(),( =  
where A(x,δ) is a prefactor that is independent of δ for fractal objects as δ tends to 0. The fractal 

dimension can then be estimated as the average value of Dl over all points x.  
The two-surface method is an indirect method for estimating the fractal dimension of an object. It 

has been used in the context of plant crown analysis by (Zeide and Pfeifer, 1991). The method 
compares the total leaf area SF of supposed fractal dimension Ds to the convex envelop area SE of the 
crown of dimension 2 of a plant. It can be shown that the two values are linked by the following 
equation (Godin, 2003): 

2).(
sD

EF SkS =  
where k is a constant. According to this equation, the estimation of Ds can be made from the 

measurement of pairs of values (SF, SE) on different individuals of the same species. The two-surface 
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fractal dimension Ds is defined as the slope of the regression between the log values of these 
variables.  
Lacunarity  

The fractal dimension does not characterize completely the geometric properties of fractal objects. 
For instance, plants AC1 and AC2 have identical fractal dimension 2 but show geometries with 
different gap structures. Lacunarity has been introduced as a complementary measure to reveal such 
characteristics. The paper will compare different definitions of this quantity.  

The most widely used definition of lacunarity corresponds to the relative moment of order 2 of the 
distribution of local mass at scale δ when x varies inside the object bounding box (i.e. not only on the 
object).  

2

2

)),((
)),(()(

δ
δδ
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This definition shows nice formal properties and can be computed using a gliding box algorithm 
(Allain and Cloitre, 1991). Alternatively, a modified definition of the lacunarity L°(δ) can be defined 
where x varies only on the object, e.g. (Gouyet, 1992). 

 
Sketch of results and discussion 

Results will show the different fractal characteristics (fractal dimensions and lacunarities) 
computed on both real and artificial crowns. Figure 4 illustrates typical estimations of these values for 
the peach tree and  compared to equivalent characteristics for a non-fractal random canopy.  

 

 
Fig 4. Comparison of Peach tree, self-similar tree AC3 and random tree crown (diamonds = peach tree, triangles 
= AC3, squares = random curve). Left: logarithm of number of intercepted voxels as a function of logarithm of 

voxel size. Right: Lacunarity.  
 
This study shows that plants crown geometry exhibits a fractal behaviour. Theoretical plants were 

used to assess the quality of fractal parameter estimation on geometries for which these quantities 
could be computed analytically. Lacunarity is shown to be a useful complementary information of the 
standard fractal dimension in order to characterize plant crown irregularity. Interestingly, the fractal 
dimension of plants we investigated in this study is closed to 2, e.g. the dimension of a surface. Turbid 
medium does not behave as a fractal object (as previously reported in (Plotnick et al., 1996)). The 
different methods to compute fractal dimension and lacunarity will be compared and their ability to 
characterize irregular geometry of plant crows will be discussed. 
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