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Abstract

E. I. Zolotarev’s so-called First Problem (ZFP) of 1877 ([1], [2], [4], [8], [16]) extends
P. L. Chebyshev’s approximation problem of 1854 [3] and calls for a polynomial P ∗

n,s

of degree n with two fixed leading coefficients, 1 and −ns (where s ∈ R is given), i.e.
P ∗
n,s(x) =

∑n−2
k=0 a

∗
k,n(s)x

k + (−ns)xn−1 + xn, which deviates least from the zero-function
on [−1, 1] (in the uniform norm). It suffices to consider s ≥ 0, and we focus on the
non-trivial cases s > tan2( π

2n
) for which the resulting P ∗

n,s is called a proper or hard-
core monic Zolotarev polynomial. It alternates n times on [−1, 1] and 2 times on some
[α, β], including the endpoints of these intervals as alternation points, where 1 < α < β.
Zolotarev himself provided a transcendental solution for all n ≥ 2 in terms of elliptic
functions [16]. The provision of an algebraic solution to ZFP has been vibrant from the
outset, and was restated in [5] as an open problem to be solved on a computer, for n ≥ 6.
The cases 2 ≤ n < 6 are settled [11].

We provide, accompanied by an example, an explicit algebraic solution to ZFP for
polynomials of degree n ∈ N := {6, 7, 8} by determining the optimal coefficients a∗k,n(s)
of the proper monic Zolotarev polynomial P ∗

n,s in four traceable steps. The first two of
these are:

1. To express, for each n ∈ N , tentative coefficients ak,n(α, β) of P ∗
n,s as integer

rational functions of α and β, where 0 ≤ k ≤ n− 2.
2. To calculate, for each n ∈ N , a pair of dedicated polynomials Fm(n),s and Gm(n),s

of degree m(6) = 8, resp. m(7) = 12, resp. m(8) = 16, whose coefficients bl,m(n)(s)

and cl,m(n)(s) are integer polynomial functions of s, where 0 ≤ l ≤ m(n).

In 2004 A. Shadrin [13] remarked: Recently, the interest in an explicit algebraic so-
lution of ZFP was revived in the papers [7], [9], and [14], but it is only Malyshev who
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demonstrates how his theory can be applied to some explicit constructions for particu-
lar n. Actually, V.A. Malyshev [7] calculated the polynomials Fm(n),s and Gm(n),s for
2 ≤ n < 6 and predicted correctly, as we have verified in step 2, their degrees for n ∈ N .

Our approach to ZFP for low-degree polynomials ought to be contrasted with the
approach via symbolic computation by D. Lazard [6] of 2006, where a solution for 6 ≤
n ≤ 12 is claimed, but no explicit example is shared. In 2007 K. Schiefermayr [12]
presented a methodical algebraic approach to ZFP based on results of [10], [15], without
however going into details for n ∈ N .

We point out that the here introduced general coefficients ak,n(α, β), bl,m(n)(s) and
cl,m(n)(s), which facilitate the determination of the sought-for P ∗

n,s (where n ∈ N), do not
appear in any of the references above. Once these coefficients are stored, the construction
of P ∗

n,s for any given n ∈ N and any given s > tan2( π
2n
) becomes straightforward. Remark:

This Abstract is adapted from our poster, see Poster Session. Our participation in the
Conference will be online only.
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